7 research outputs found

    The Maunakea Spectroscopic Explorer Book 2018

    Full text link
    (Abridged) This is the Maunakea Spectroscopic Explorer 2018 book. It is intended as a concise reference guide to all aspects of the scientific and technical design of MSE, for the international astronomy and engineering communities, and related agencies. The current version is a status report of MSE's science goals and their practical implementation, following the System Conceptual Design Review, held in January 2018. MSE is a planned 10-m class, wide-field, optical and near-infrared facility, designed to enable transformative science, while filling a critical missing gap in the emerging international network of large-scale astronomical facilities. MSE is completely dedicated to multi-object spectroscopy of samples of between thousands and millions of astrophysical objects. It will lead the world in this arena, due to its unique design capabilities: it will boast a large (11.25 m) aperture and wide (1.52 sq. degree) field of view; it will have the capabilities to observe at a wide range of spectral resolutions, from R2500 to R40,000, with massive multiplexing (4332 spectra per exposure, with all spectral resolutions available at all times), and an on-target observing efficiency of more than 80%. MSE will unveil the composition and dynamics of the faint Universe and is designed to excel at precision studies of faint astrophysical phenomena. It will also provide critical follow-up for multi-wavelength imaging surveys, such as those of the Large Synoptic Survey Telescope, Gaia, Euclid, the Wide Field Infrared Survey Telescope, the Square Kilometre Array, and the Next Generation Very Large Array.Comment: 5 chapters, 160 pages, 107 figure

    Observation en temps réel de la spéciation du soufre et de son partage entre les phases aqueuse et hydrocarbonée pendant des expériences de réduction thermochimique des sulfates

    No full text
    International audienceObservation en temps rĂ©el de la spĂ©ciation du soufre et de son partage entre les phases aqueuse et hydrocarbonĂ©e pendant des expĂ©riences de rĂ©duction thermochimique des sulfates. Raymond Michels1*, Guillaume BarrĂ©1, Laurent Truche2, ValĂ©rie BurklĂ©- Vitzthum3, Roda Bounaceur3, Catherine Lorgeoux11 UniversitĂ© de Lorraine, CNRS, GeoRessources, UMR 7359 - France2 Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre – France3 UniversitĂ© de Lorraine, LRGP CNRS-UMR 7274, ENSIC - FranceMots-ClĂ©s : expĂ©rimentation, TSR, rĂ©activitĂ© du soufre, hydrocarbures, rĂ©servoir pĂ©trolier.En gĂ©ochimie organique, la majoritĂ© des expĂ©riences hydrothermales sont conduites dans des rĂ©acteurs fermĂ©s. Dans certains cas des rĂ©actifs peuvent ĂȘtre injectĂ©s ou des produits retirĂ©s en cours de rĂ©action. Et dans la plupart des cas, les produits de reactions sont analysĂ©s en dehors des conditions expĂ©rimentales, typiquement aprĂšs l’arrĂȘt du rĂ©acteur. Les bilans de masse sont ainsi calculĂ©s sur la base de sĂ©ries d’expĂ©riences Ă  degrĂ© d’avancement croissant et les produits caractĂ©risĂ©s Ă  chaque Ă©tape. Les chemins rĂ©actionnels sont ensuite proposĂ©s de façon Ă  concilier bilan de masse et nature des produits.Cependant, des espĂšces rĂ©actives transitoires apparaissant pendant l’expĂ©rience, disparaissent une fois que tempĂ©rature et pression sont revenues aux conditions ambiantes. Leur nature, abondance et distribution entre phases peuvent changer avec les conditions expĂ©rimentales. Les nĂ©gliger peut avoir des consĂ©quences sur notre comprĂ©hension des mĂ©canismes rĂ©actionnels et ainsi altĂ©rer la qualitĂ© des modĂ©lisations. Aussi, les expĂ©riences tiennent rarement compte des changements de phase et de la rĂ©partition des espĂšces chimiques que cela implique.Un aspect clĂ© est donc de mener les expĂ©riences dans des rĂ©acteurs qui permettent le suivi in-situ des espĂšces chimique dans chaque phase en prĂ©sence. Dans le cas de la rĂ©duction thermochimique des sulfates (TSR) trois phases doivent ĂȘtre suivies: les phases liquides aqueuse, et hydrocarbonĂ©e ainsi que la phase gazeuse.Nous prĂ©senterons ainsi le suivi in-situ du devenir du soufre dans les trois phases, grĂące Ă  l’utilisation de micro-capillaires de silice couplĂ©s Ă  des analyses par micro-spectroscopie Raman. Cette technique permet d’analyser chaque phase indĂ©pendamment dans une mĂȘme expĂ©rience . La dĂ©termination de la nature et de la rĂ©partition des espĂšces chimiques en cours de rĂ©action a ainsi des implications sur notre façon de concevoir et modĂ©liser la rĂ©activitĂ© des interactions entre espĂšces soufrĂ©es et hydrocarbonĂ©es

    Tectono-metamorphic evolution of an evaporitic dĂ©collement as recorded by mineral and fluid geochemistry: The “Nappe des Gypses” (Western Alps) case study

    No full text
    International audience16 Evaporites play a major role on the structuration of collisional orogens especially when they 17 act as décollement units. However, their exact pressure-temperature-deformation (P-T-d) paths 18 are poorly documented. In this study, the first direct P-T-d constraints of the "Nappe des 19 Gypses" formation (western French Alps) have been established. An innovative association of 20 structural geology, petrography, crystallochemistry, and detailed study of both fluid inclusions 21 and stable isotopes (C, O) analysis has been applied to this evaporitic facies. Geochemical 22 analysis shows that the "Nappe des Gypses" formation has recorded the three typical 23 metamorphic and deformational events of the Alps (namely D1, D2 and D3). These different 24 constraints allow the determination of the first determination of the P-T path for this unit. 25 Metamorphic peak conditions of the "Nappe des Gypses" are at 16.6 ± 2.3 kbars and 431°C ± 26 28°C. This formation was buried at similar conditions than the oceanic units. During the 27 exhumation path, the D1-D2 transition is reached at 350°C ± 20°C and 6.5 ± 1.8 kbars and the 28 D2-D3 transition is assumed to be at 259°C ± 24°C and 2.0 ± 1.0 kbars (Strzerzynski et al., 29 2012). Peak P-T conditions overlap those of the median Liguro-Piemontese units but are 30 different from those of the Briançonnais units. It implies 1) an active and crucial role of the 31 "Nappe des Gypses" during the exhumation of the Alpine oceanic complex. And 2) confirms the 32 allochthonous and more distal origin of the European Thetysian passive margin of the "Nappe 33 des Gypses" formation. Consideration of sulfates dehydration probably between 15.0 and 16.6 34 kbars and 200 and 300°C, allows to discuss pore pressure excess and its mechanical 35 consequences on the exhumation process. This process is very likely to amplify the 36 "décollement" effect of the evaporites and allow the nappe stack formation. 37 This illustrates the role of this formation as a décollement surface. This difference of 38 evolution highlights the major role of the evaporitic formations on the exhumation and 39 structuration of a collisional chain. Such methodology could contribute to decipher the role of 40 evaporites in the structural context of other collisional chains such as Himalaya, Pyrenees or 41 Zagros. 4
    corecore